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Abstract-This paper addrelises the problem encountered in the quantitative description of arrange­
ments and correlations in unidirectionally reinforced composite materials. Both topological and
second-order statistical measures are related to the stress variability that exists under transverse
loading conditions. The main attention is paid to the variability of interfacial maximal radial stresses
which are primary sources of an interfacial debonding. Correlation measures have been suggested
for global, as well as local, correlations. It is shown that a further improvement of the local
correlation measures is neCl:ssary if it is going to be used as a diagnostic tool to pinpoint most
loaded, local areas of the mi~rostructure. © 1998 Elsevier Science Ltd. All rights reserved.

l. INTRODUCTION

Variability of the arrangement of microstructural features and their mutual interaction
determines physical characte:ristics of materials. This is particularly true for the description
of strongly non-linear phen.omena such as fracture, where the short range interactions
between microstructural entities playa dominant role in non-homogeneous local variations
of field quantities. For not dilute concentrations the interaction effects between neigh­
bouring inclusions are highly influential on the overall behaviour of the material. Conse­
quently, it is important to develop a framework which would allow to classify different
types of inclusion dispersions and provide a quantitative information related to spatial
distribution of inclusions.

If the material is statistically homogeneous, which means that the local material
properties are constant wh<m averaged over a representative volume element, then it is
possible to replace the real disordered material by a homogeneous one, where the local
material properties are the averages over the representative volume element in the original
material. Estimation of tho~je averages presents a fundamental issue for different effective
medium theories (Nemat-Nasser and Hori, 1993; Chen et al., 1992; Takao et al., 1982;
Benveniste, 1987). Usually, the size and the shape of the inclusions are accounted for, but
as far as the spatial distribution of inclusions is concerned the salient assumption is made
that the inclusions are uniformly distributed in a random fashion. On the other hand, a
finite element calculation procedure implies in most cases periodicity of the inclusion's
distribution. However, very few microstructures are purely random or perfectly regular. In
order to perceive the microstructure of composite materials as it really exists rather than as
described by some assumed model, it is necessary to recognize that we have to deal with
non-regular, non-random microstructures.

The arrangement of fibres in unidirectional composites can be studied by representing
each fibre observable on the transverse sections by an associated centre point, and analyzing
the set of points irregularly distributed in the area of observation. Point patterns may be
classified using different measures such as neighbour distances and orientations, areas of
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conjugate Dirichlet polygons, micromorphological parameters and degree of contiguity
(Everett and Chu, 1993; Taya et al., 1991 ; Altan et al., 1990; Wimolkiatisat et aI., 1990;
Pyrz, 1993, 1994a). More informative characteristics of the point set are obtained using
statistical second-order quantities which examine the association of points relative to other
points of the set in an immediate local neighbourhood of the reference point (Ripley, 1977;
Pyrz, 1994a; Hanisch et al., 1985; Konig et al., 1991; Karlsson and Liljeborg, 1994). These
quantities are statistically averaged over all the points of the set and, therefore, do not
provide a detailed knowledge concerning the local configuration of points. Nevertheless, it
is possible to derive several useful parameters such as most frequently occurring distances
between points and an averaged number of points lying within a predetermined distance,
which may be used for constitutive modelling purposes. Careful analysis of second-order
quantities may disclose subtle differences between apparently similar distributions as shown
in Pyrz (1995). Topological properties of the pattern are intimately related to morphological
analysis of the micros'xucture in a similar way as the geometrical properties. In the context
of point sets, which exemplify distribution of fibres, the point pattern may be replaced in a
unique way by conju:5ate polygonal tessellations. Then the topological properties rather
than metric propertie~; of underlying dispersion can be studied and can be related to some
physical mechanisms which constitute the microstructure (Rivier, 1985; Weaire and Rivier,
1984; Lemaitre et al., 1993).

Since an ultimate task of material characterization is to find a direct link between
microstructures' comtitution and physical properties it is desirable to investigate the
relations which correlate geometrical and topological properties of the microstructure with
field quantities, which exist within the microstructure under imposition of an external
loading. Most existing investigations correlate regular or periodic microstructures with
overall properties and field quantities [see Bohm and Rammerstorfer (1995); Moulinec et
al. (1995); BrockenbJrough et al. (1991); Zhu and Achenbach (1991)], and only a few
contributions have paid attention to the correlation of physical properties with disordered
microstructures [e.g. Siegmund et al. (1995); Pyrz (1994b); Stoyan and Schnabel (1990);
Pyrz (1997); Torquato (1991); Beran (1968)].

The intent of thi:; work is to describe a convenient framework that allows to estimate
geometrical and topological properties of different dispersions of fibres in unidirectional
composites and to relate these properties to the stress field under transverse loading
conditions.

2. STRESS FIELD

The amount of constituent elements forming the material is in many cases known
beforehand as for example the volume fraction of reinforcing phase in composite materials.
However, the volume concentration of inclusions is merely a statement of the overall
composition of the material rather than of its dispersion characteristics. The final archi­
tecture of a microstructure is controlled only to a limited extent, and on the microscale the
geometrical arrangement of second-phase inclusions is a result of complex and interacting
processing micromechanisms. If the processing conditions are stable and the variability
of constituent properties are minimal then we may consider resulted microstructure as
statistically homogeneous when sampled at different positions in a body of the material. In
simulation experimerts three model dispersions have been generated (Fig. 1). A hard-core
dispersion arises by the imposition of a minimum permissible distance between any two
points which are distributed randomly otherwise. The hard-core one model is obtained by
the imposition of the prohibitive distance between points to be significantly larger than the
fibres diameter, whereas in the hard-core two model a minimal interpoint distance is equal
to the diameter of fibres. This restriction guarantees a large degree of randomness to be
present in the hard-cJre two pattern. The cluster model may be created in many different
ways by distributing duster centres randomly and placing offspring points randomly around
parent points within a predetermined area. In this case, cluster area, number of parent
points and number ofdaughter points within each cluster can be randomized. In the present
case the cluster distribution possesses 30 parent points and 10 randomly distributed around
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Fig. I. Dispersion patterns of fibres.

offspring points. The hard··core one and hard-core two distribution models exemplify,
respectively, well processed composite and a composite processed with insufficient con­
solidation pressure that re~;ults in decreased penetrability of fibres through the matrix
materiaL The cluster model represents composite reinforced with randomly dispersed
bundles of fibres.

The local stress analy_is of patterns is reduced to a two-dimensional plain strain
problem as the fibres are assumed to be elastic parallely aligned, and embedded in an elastic
matrix with perfect bonding (Pijaudier-Cabot and Bazant, 1991).

The stress field solution for a single inclusion embedded in a matrix may be obtained
analytically from the Eshelby solution (Mura, 1987). As for the Eshelby solution the
eigenstrain analogy is also applied, but contrary to this solution where the Eshelby tensor
is solved, an iterative procedure is derived. The heterogeneous solid is replaced by an
equivalent homogeneous one where tractions are applied on the imaginary contour of the
circular fibre and an unbalanced stress field is added inside the imaginary contour. The
stress field inside the fibre is determined by an iterative procedure, and subsequently the
stress field in the matrix can be calculated.

In the solution of multiple fibres the stress field interaction between the fibres must be
taken into account. The basic idea of accounting for this interaction is to determine the
stress field inside a fibre as it would be alone including, however, the interacting stress field
from the neighbouring fibres. Then, the problem is divided into a number of subproblems
corresponding to the number of fibres (Fig. 2).

Each subproblem is solved as for a single fibre and in addition the interacting stresses
from the remaining fibres are included in the stress field calculation inside the area covered
by the fibre. The plane solid containing multiple randomly dispersed fibres is subjected to
unidirecitonal loading (100 at the remote boundaries. The solid contains N fibres all of
circular shape, and the boundary curves for the fibres are denoted by rj where j = 1, ... , N.
All the fibres have the same elastic stiffness Da and the matrix has the elastic stiffness Dm •

Radii of the fibres are all equal to R = 5 J.lm.
As a starting point in the iterative procedure the stress field in the whole solid is equal

to remote loading at boundaries (I = (100' Using the theory of eigenstresses (Mura, 1987),
the unbalanced stress field for each fibre becomes:

A(lj = (Dm-Da)D; l(lj j = 1, ... , N.

Tractions are applied at the imaginary contours of the fibres

(1)
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Fig. 2. Superposition scheme for a solid containing multiple fibres.

(2)

when OJ is an outward unit normal to the circular contour r j . The boundary curve r j is
subdivided into segments of length ds, and the tractions Pj are replaced by concentrated
forces pjds. By applying the solution for a concentrated force in a homogeneous elastic
solid the disturbance ~:tress from pjds is denoted as f[pj]ds along the circular contours

tJ'ij = l f[pJds j = I, ... ,N,Jr.. (3)

and the disturbance stress is calculated at an arbitrary point within the contour. The new
stress field inside the fibres is obtained by

N

tJ'j = tJ'oc +L tJ'ij-ArYj inside r j .
i=1

(4)

From this expres:,ion the unbalanced stress is re-calculated according to eqn (I), and
the iterations are repeated until Pj does not change significantly. The method converges
quite rapidly and the stress field outside the fibre may be determined as follows:

N

tJ'j = tJ'oc + L tJ'ij outside r j •
i=1

(5)

The stress analysis is implemented in a numerical procedure and the stress field at any
arbitrary point is obtained within reasonable computational time. It should be noted that
every simulated pattern must be equipped with appropriate boundary conditions. Since the
dispersion of fibres is observed within a finite window the edge effects may influence the
stress field calculations as well as a calculation of geometrical and topological parameters
of the dispersion. In order to avoid this problem periodic boundary conditions are applied
to all calculations. It means that the window of observation has to be surrounded by a
sequence of windows ,;ontaining the same dispersion patterns as the original one. In other
words, we enlarge the space of observation by assuming that the dispersion of fibres in a
very large area may be reconstructed from a single window of observation by a sequential
repetition of the observation window itself. This keeps the dispersion characteristics fixed
and diminishes the edge effects.
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Since the initiation of microcracking usually occurs at the fibre-matrix interphase,
maximal radial and tangential stresses in an annular layer around each fibre are of particular
interest. Figures 3 and 4 illustrate variability of maximal radial and tangential stresses for
all fibres of each dispersion types. The stresses have been calculated for both uniaxial as
well as biaxial loading. The influence of the dispersion type on the maximal value of radial
and tangential stresses is apparent. First of all, fluctuations of stresses are smallest for the
hard-core one distribution whereas the cluster distribution contains a number of fibres with
significantly larger stress values than other fibres in the pattern. Secondly, maximal radial
stresses for all fibres in considered dispersions are amplified with respect to remote unit
load, whereas only a certain number of fibres in the hard-core two pattern and a larger
number in the cluster patterr are exposed to amplified tangential stresses. It is interesting
to notice that the mean value of maximal radial and tangential stresses increases as the
dispersion gets more disordered. The local variability of stress maxima is completely hidden
in this quantity. Imposition of the biaxial loading to the patterns does not alter significantly
maximal radial stresses, and if anything, the slight decrease of stress intensity is observed,
however, the picture of maximal tangential stresses changes dramatically. The values of
maximal tangential stresses are magnified almost twice as compared to the uniaxial loading.
Thus, it is most likely that maximal radial stress hot spots alone generated under uniaxial
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Fig. 3. Variability of maximal radial stresses among fibres in uniaxial and biaxial loading.



2418 R. Pyrz and B. Bochenek

1 1.6 1_unillxiaJ I IHard-core 1 I
~ 1.4-1-- I

i 1.2

i 1

1iI 0.8 [,f..J.~!WN.l\lMo'f'!Jol~~I
.~ 0.6

::!: 0 4 Lo.----..._~---..._~_.J
· 0 50 100 150 200 250

Fibre number

12.~ll~=1

t~:
~ 1.8

.~ 1.5 I.

::!: 1 2 Lo.-.........._~.........._~_.J
. 0 50 100 150 200 250

Fibre number

1 1
.6

~ 1.4 1'-_---'r:
~ 0.8

.~ 0.6

::!: 0 4 Lo.----..._~.........._~_.J
· 0 50 100 150 200 250

Fibre number

3 n-~--r----..,

12.7 I '----'i 2.4

i 2.1

~ 1.8

.~ 1.5

::!: 1 2 L...-.........~~........._ ................J

. 0 50 100 150 200 250
Fibre number

3 n----r----,

12.7
i 2.4

i 2.1

1iI 1.8

·i 1.5
::!:

1 1.6

iii 1.4 I '--_---II

~ 1.2
c
& 1
!
1iI 0.8

·i 0.6
::!: 0 4 Lo.-.........._~.........._~_.J

· 0 50 100 150 200 250
Fibre number

Fig. 4. Variability of maximal tangential stresses among fibres in uniaxial and biaxialloading.

loading are strong enough to initiate interfacial debonding, provided that the matrix
strength is higher than the strength of the interphase. Furthermore, it is expected that
increased intensity of both radial and tangential maximal stresses under biaxial loading
would initiate radial matrix cracks combined with interfacial debonding. In the following
analysis the attention will be paid exclusively to maximal radial stresses under uniaxial
loading conditions.

Amplification of local maximal radial stresses and their variability is related to nearest
neighbour distances md nearest neighbour orientations of adjacent fibres. An average
nearest neighbour distance between fibres in the hard-core one model is larger than for two
other models and this tendency is prevailed for all nearest neighbour orientations where
the loading direction corresponds to 90 0 (Fig. 5). The inter-fibre distances in the cluster
model are significantly smaller and vary with orientation to a larger extent than in the hard­
core distributions. Since the interaction effects are strongly influenced by the distances
between neighbouring fibres, as will be shown in a sequel, the stress amplification is much
more pronounced in the cluster model than in the other two models. Furthermore, the
amplification of the maximal radial stresses is largest for fibres which are aligned very close
or along the loading direction. There are more fibres in the cluster model which are mutually
positioned along the loading direction at shorter distances than in other models. This has
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resulted in larger variability of maximal radial stresses among the fibres dispersed in the
form of clusters.

3. GLOBAL CORRELATIONS

Statistical fluctuations of interfacial stresses are caused by a geometrical disorder of
the microstructure. A system is weakly disordered if the disorder disappears when one
samples the system at progressively smaller or larger scales. In strongly disordered systems
the disorder persists at all s·:ale lengths. Furthermore, some of the physical processes may
be dependent upon the syst.~m size, as well. In the present investigation the system is fixed
with respect to the size of the observation window and the number of microstructural
entities under consideration, i.e. number of inclusions. Thus, the fibre volume fraction is
the same for all simulation!, in order to eliminate an eventual effect of fibres density. It is
expected that varying fibre volume fraction may change a quantitative picture of relations
between stresses and/or topological and geometrical properties of considered distributions
preserving, however, qualitative characteristics of correlations. Then we consider the win­
dow of observation as a statistically representative area. It is in this area where we seek to
find correlations between gLobal descriptors of disorder and the stress variability.

Figure 6 illustrates transformation of the point set onto the set of contiguous polygons.
This construction, referred to as the Dirichlet tessellation, defines uniquely neighbours of
the fibres. Each fibre is assigned a polygonal cell enclosing all points which are closer to the
reference fibre than to any other fibre. The sides of the enclosing polygon are obtained from
the set of perpendicular bisectors of the line segments that connect the enclosed fibre with
neighbouring fibres. Boundary polygons which have a fragment of the window frame as
one of the edges are excluded from the analysis. This is because their topology and geometry
is not solely defined by a point set but is artificially constrained due to a finite size of the
observation window.

Several metric properties of polygonal sets may now be investigated for different
dispersions such as distribution of cell areas, perimeters, elongation, etc. In geometrical
terms, all random cellular structures generated by the same point set model are indis­
tinguishable, even if they are not identical when superimposed. Therefore, the polygons
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Fig. 6. Dirichlet tessellations for three distributions.

cannot be defined and distinguished by their size or any other metric measure alone. Their
distinctive feature is their shape which is a topological property. Aiming to describe the
topological randomness of the pattern, the topological shape of a polygon, i.e. the number
ofits sides, is considered as the random variable. Then the polygonal tessellation is described
by the frequencies Pn of finding an n-sided polygon (Fig. 7). Statistical status of the polygonal
network may be chara,:terized by the t9pological entropy (Rivier, 1985)

k

S = - L PnlnPn
n=l

(6)

The topological entropy measures a degree of arbitrariness. The entropy value for a
perfectly regular pattern is always equal to zero and grows with an increasing disorder. It
is also a remarkable property of polygonal tessellations that the average number of polygon
sides is six and this value is conserved regardless of the degree of disorder of the underlying
point pattern. Thus the frustration of the random network of polygons, i.e. growing
topological entropy is (:aused by an appearance of polygons with a number ofedges different

0.5 r-------;:====,
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0 .......-
3 4 5 6 7 8 9 10

Number of polygon sides
Fig. 7. Frequency distribution of n-sided polygons for considered patterns.
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from six. Figure 8 shows the relation between the size of polygons and their topological
shape. Independent of the degree of disorder the mean area of n-sided polygons grows with
the number of polygon sid,es. This property may be derived from eqn (6) supplied with
normalization, space filling and topological constraints (Rivier, 1985). It is to be noticed
that the mean area of six-sided polygons is almost identical for considered patterns. Thus,
one could consider polygons with the number of sides different from six as topological
defects which influence the value of topological entropy as well as enlarge the variability of
the stress field depending on the degree of disorder. For example, the existence of many
small four-sided and large eight-sided polygons in the cluster model (Figs 7 and 8), increases
significantly the value of topological entropy as compared with the hard-core models.
Simultaneously, the referenGe fibre enclosed by the four-sided polygon has a big chance of
being close to other fibres ~:ince its "territory", i.e. the area of the polygon, is on average
smaller than other polygon:;. On the other hand, the fibre contained within the eight-sided
polygon has much more freedom as far as its location is concerned. However, there are
many more eight-sided polygons in the cluster model than in the hard-core models and,
therefore, the probability of those fibres to be closer located to their neighbours in the
cluster model is larger than in the hard-core models. These considerations suggest that the
topological defects may have an effect on the amplification of interfacial stresses and their
variability. The global correlation between stress field and topology expressed in terms of
the coefficient of variation and the topological entropy is shown in Fig. 9. The coefficient
of variation is defined as the ratio of standard deviation to mean value of maximal radial
stresses. This figure illustrates the results of different simulations where several realizations
of three models have been performed according to procedures described previously. The
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Fig. 9. Correlalion between topological entropy and maximal radial stresses.
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graph is divided into three areas corresponding to hard-core 1 (1), hard-core 2 (2) and
cluster (3) models, respectively. Variability of the stress field increases with increasing
topological disorder in agreement with results shown in Fig. 3. The large dispersion of the
results for the cluster nodel is probably caused by a variety of different cluster realizations
as far as a number of parent and offspring points as well as areas of clusters are concerned.

An appealing alternative to describe global correlations in point fields is a multivariate
characterization of patterns by second-order quantities (Stoyan and Stoyan, 1994). In
addition to positions of fibres we introduce a further variable to be the "mark" of the fibre
with a given position. The mark represents a typical feature expressible by numbers which
may correspond to the size, shape of fibres or any field quantity known at the fibre spot. In
the present context the maximal radial stresses at fibres' interphases are taken as marks.
The mark correlation function M(r) corresponds to the conditional mean value of the
marks' product of a pair of fibres positioned r distance apart. Construction of the mark
correlation function i:; shown in Fig. 10. First, one calculates the second-order mark
intensity function H(r) which describes the mean value of the pair products of marks mk
attached to the points within a circular area r

(7)

where m is the mean value of marks in the observation area A, and hi is a sum of mark
products between the ith point at the centre of the circular area r and all points lying within
it, i.e.

k'

hi = L mimk'
k=l

(8)

Components hi are calculated for all N points as centres and the procedure is repeated for
increasing values of radius r. Taking the derivative of the mark intensity function H(r) with
respect to r, one obtains the mark correlation function M(r) (Fig. 11). Sharp peaks present
in the graphs suggest a strong correlation (amplification) of marks' value at corresponding
distances. These distances are related to average nearest neighbour distances (see Fig. 5).
The larger peak valm:s, the stronger attraction exists between marks in the pattern as
exemplified by the cluster model. The mark correlation function fluctuates tending to unity
at larger distances indicating that no further correlation exists at those distances. The
limiting distance, where M(r) starts to fluctuate around unity without any distinct appear­
ance of peaks and valleys, determines the correlation length of a given pattern. The clear
minimum of M(r) at distances equal to 60 /lm indicates a gap in the correlation at those
distances which represent a separation distance between clusters. The information contained
in the mark correlation function is averaged over the observation window and hence

•
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•
•

• • •

•

•
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Fig. 10. Construction of the mark correlation function.
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provides only global correlations that might exist in the pattern in a similar manner as
topological correlations do.

4. LOCAL CORRELATIONS

Statistically averaged topological and second-order functions presented in the previous
chapter precluded to draw any conclusion that refers to local values of field quantities.
Established correlations are valid at scale lengths which are equal or larger than the window
of observation. Local correlations can only be determined if we find relations between a
short-range configuration of fibres described by a suitably chosen measure and cor­
responding values of field quantities.

Pairwise interactions between neighbouring fibres and pairwise location correlations
are fundamental building blocks in the global correlation scheme. For a single pair of fibres
located a distance d apart and having radius R = 1 amplification of maximal radial stresses
at the reference fibre is largest for small inter-fiber distances and, in the case of uniaxial
loading, when the fibres an: aligned along loading direction (Fig. 12). An angular deviation
of the neighbouring fibre from the loading direction decreases the degree of interaction
between fibres and results in lower maximal radial stresses of the reference fibre. If the
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Fi!:. 12. Maximal radial stresses for the pair of fibres.
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Fig. 13. Distribution of neighbouring fibres for n-sided regular polygons.

reference fibre is surrounded by regularly placed 4, 5 ...8 neighbours (Fig. 13), i.e. the
neighbours are at vertices of the regular quadrilateral, pentagon ... octagon, then the
maximal radial stress intensifies as the number of polygon edges decreases (Fig. 14). Thus
the surrounding neighbours have a screening effect on the reference fibre. However, it has
to be remembered that this effect is present in regular configuration of neighbours, whereas
such configuration is vl~ry unlikely to occur in simulated distribution models. Furthermore,
the reference fibre is not necessarily located at the centre of the polygon and it may happen
that the eccentricity i~; so large that the interaction effect from the nearest fibre totally
overshadows influence of the remaining fibres composing the polygonal cell. Nevertheless,
these effects can be captured again by the pairwise interaction between the reference fibre
and its neighbours.

Introducing a correlation parameter as

where

( () ..)
Cij = dij 1+:

(9)

(10)

one tries to find a correspondence between stress interaction effects and geometrical par­
ameters dij and ()ij which represent a length of centre line and its orientation with respect to
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Fig. 14. Maximal radial stress of the reference fibre with n neighbours.
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the loading direction (Fig. : 5). Normalizing factor rx is equal 60° which is the centre line's
declination angle at which the pair of fibres ceases to interact (see Fig. 12). The minimal
correlation parameter is found among neighbours j of the reference fibre i for all
i = 1, ... ,N. The smallest value C should correspond to the largest value of maximal radial
stresses among all fibres in the pattern, provided eqn (10) is valid and only pairwise
interactions are taken into account. Figure 16 gives two examples of the correlation par­
ameter's validity. Fibres exposed to largest maximal radial stresses may come in pairs if
they are mutually nearest neighbours or as singles otherwise. The correlation parameter is
sensitive enough if stress differences among fibres are larger than say 10%. Then cor·
responding differences of C values are large, as well, and an identification of the stress hot
spots is unique. However, the situation gets worse if stress differences are small. For example
one would wish to pin point 10 fibres with highest maximal radial stresses among all fibres
of the hard-core model. Th~ stress range for these ten fibres is from 1.659 for fibre number
1-1.527 for fibre number 10. Corresponding values of Care 11.45 and 13.25, respectively,
thus still according to expectations. However, the smallest value of the correlation coefficient
is related to the fibre exposed to the maximal radial stress equal to 1.627 which is third
largest. Moreover, there are twelve other fibres with correlation coefficient smaller than
13.25 (as for the 10th fibre) despite the fact that fibres' stresses are slightly larger than the
stress of the 10th fibre. In other words, the coefficient of correlation selects more fibers than
it would be suggested from the stress analysis. This frustration is caused by insufficient
differences of stresses in the 10 most loaded fibres. It is simultaneously observed that the
differences of distance dij for selected fibres are very small, as well. In such a situation
secondary correlations may be decisive which means that the correlation coefficient Cii
should depend further on the configuration of fibres which surround each j fibre .
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Fig. 16. Detection oflocal stress hot spots.



2426 R. Pyrz and B. Bochenek

5. CONCLUDING REMARKS

The framework that quantifies the distribution of inclusions and allows for the deter­
mination of most important aspects of microstructure's disorder is prerequisite for a
rigorous statistical assessment of the microstructure arrangement and its relation to the
field quantities. Methodology presented here may be extended further in several respects.
For example, the glob:;.! correlations between stresses and topology rely upon the coefficient
of variation that is supposed to represent a variability of the stress field. This statement is,
however, overestimated in the sense that the coefficient of variation includes only first two
moments of the stress distribution whereas a more precise description of the stress dis­
tribution would necessitate an involvement of higher-order moments of the distribution or
their combinations. In any case, the global stress estimator should always have a clear
physical interpretation which could be difficult to achieve with higher moments of the stress
distribution, except perhaps first four statistical moments. The concept of local geometrical
descriptor C seems to be worth a further development. Its simple linear form should be
replaced by a more elaborate, nonlinear expression determined from many realizations of
polygonal unit cells surrounded by next near neighbour fibres. Then the second order
correlations would be automatically taken care of. A successful selection of reliable local
correlation coefficient~ would provide a diagnostic measure of local load bearing capacity
of microstructures.

Problems posed in the present paper and related to classification of inclusion distri­
bution, determination of topological and geometrical quantities which decisively influence
the overall and localqroperties of materials and the exploration of a scaling law which
allows to cross bound2.ries between different length scales, all belong to the area of research
that awaits a further development.
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